

Explain your answers with neat sketches whenever possible. Assume any missing data.

Assignment 4 – Datum Transformation

1. Express your views about the following statements.

- a. The importance of datum transformation in modern geospatial applications.
- b. A single global datum would be ideal for all geospatial work. Or there is value in maintaining regional datums. Explain your reasoning.
- c. The biggest challenges you see in ensuring accurate and consistent datum transformation.
- d. Datum transformation is the process of converting coordinates from one datum to another datum to ensure accurate positioning.
- e. The most common reason for needing datum transformation is because different countries might use global datums.
- f. Bursa-Wolf and Molodensky-Badekas are 7-parameter *similarity* transformations.
- 2. Using only neat sketches and mathematical functions differentiate between Bursa-Wolf and Molodensky-Badekas transformation models.
- 3. Using your written code of transformation (Take Home assignment 2), compute the similarity transformation parameters by Bursa-Wolf and Molodensky-Badekas transformation models between Helmert 1906 and WGS1984 based on the following common points: -

Point ID	WGS 84			Helmert 1906		
	φ°	λ°	h (m)	$oldsymbol{arphi}$	λ°	h (m)
1	29.9998	31.07671	110.422	29.99963	31.07503	100.466
2	30.00473	31.0883	102.437	30.00457	31.08662	92.451
3	30.00288	31.07981	106.25	30.00272	31.07814	96.285
4	29.99099	31.0714	109.606	29.99082	31.06973	99.666
5	29.99554	31.07639	106.401	29.99537	31.07472	96.447